Did Dark Matter Annihilations Reionize The Universe?

(Based on recent work with Alexander Belikov, arXiv:0904.1210)

Dan Hooper
Fermilab
Theoretical Astrophysics Group

FNAL Particle Astrophysics Seminar
June 1, 2009

The Ionization History Of Our Universe

The atoms in our universe have undergone two major phase transitions

The Ionization History Of Our Universe

1) 370,000 years after the big bang, electrons and protons combine to form neutral atoms, and release the cosmic microwave background

The Ionization History Of Our Universe

- 1) 370,000 years after the big bang, electrons and protons combine to form neutral atoms, and release the cosmic microwave background
- 2) Between z~6-20, our universe's gas once again became ionized

Empirical Handles On Reionization

- 1) The Gunn-Peterson Trough
- Neutral hydrogen absorbs light very

efficient transition

 The lack of strong Lyman-alpha absorption in the spectra of very distant quasars demonstrates that

- 2) CMB Anisotropies
- Thompson scattering of the CMB photons with free electrons can produce observable anisotropies

since z~

•WMAP has reported a Thompson optical depth of the universe of τ =0.087±0.017 (about 0.04 of which corresponds to full ionization at z<6)

Redshifts of $z\sim6-20$ correspond to ~200 million years to ~1 billion years after the Big Bang - little in the way of sources of ionizing radiation

Two leading candidates:

- Early Stars
- Quasars

Conventional* View:

At z > 6, UV radiation from star forming galaxies dominated reionization; at z < 4, non-thermal emission from quasars became significant, enabling the double ionization of helium

(Madau, Haardt, Rees, 1999)

^{*} Not to be confused with "Consensus"

•The convention scenario, however, does not automatically lead to the full reionization of the universe by z~6

- The convention scenario,
 however, does not automatically
 lead to the full reionization of the universe by z~6
- •This can be accommodated by reasonable (1 σ) shifts in cosmological parameters (σ_8 , η_s)

Dark Matter As An Alternative Source Of Ionizing Radiation?

Dark Matter As An Alternative Source Of Ionizing Radiation?

- Over the first billion years, dark matter had begun to form clumps and annihilate efficiently
- Dark matter annihilation products include gamma rays, which can scatter with electrons, causing gas to become ionized
- •If one in ~10° dark matter particles annihilate during this era, the energy released would be sufficient to completely reionize the universe

- N-Body simulations indicate that the first (and smallest) clumps of dark matter formed by z~60
- Mergers of smaller halos gradually lead to the structures observed today
- •The halo mass function depends somewhat on the cosmological parameters, but otherwise can be reliably calculated

Reed et al., MNRAS, astro-ph/0607150

lonizing Radiation From WIMP 1. WIMP Annihilation

Typical final states includ heavy fermions, gauge or Higgs bosons

LONIZING Radiation From WIMP1. WIMP Annihilation

Typical final states includ heavy fermions, gauge or Higgs bosons

2. Fragmentation/Decay

Annihilation products decay and/or fragment into combinations of electrons, protons, deuterium, neutrinos and gamma-rays

LONIZING Radiation From WIMP1. WIMP Annihilation

Typical final states includ heavy fermions, gauge or Higgs bosons

2. Fragmentation/Decay

Annihilation products decay and/or fragment into combinations of electrons, protons, deuterium, neutrinos and gamma-rays

3. Inverse Compton Scattering

Relativistic (~GeV) electrons up-scatter CMB photons to ~MeV energies

lonizing Radiation From WIMP 1. WIMP Annihilation

fermions,

final states include heavy gauge or Higgs bosons

2. Fragmentation/Decay

Annihilation products decay and/or fragment into combinations of electrons, protons, deuterium, neutrinos and gamma-rays

3. Inverse Compton Scattering

Relativistic (~GeV) electrons up-scatter CMB photons to ~MeV energies

4. Ionization, Heating and Excitation of Gas
Some of these photons go on to scatter
electrons (~1/3 of energy to each)

The Relative Importance of Inverse

- Most dark matter annihilation channels lead to a similar quantity of energy being deposited in photons and electrons
- The electrons eventually transfer their energy into a large number of lower energy photons via inverse Compton scattering with the CMB
- As the photon-electron cross section is much larger at lower energies, a much larger fraction of the IC photons' energy goes into ionizing atoms

Case Example: A Typical SUSY Neutralino

- Consider a typical ~100 GeV neutralino which annihilates to
 +W- with a cross section of ~3 x 10-26 cm³/s
- •For such a WIMP, annihilations
 the first billion years of our
 universe's history lead to only ~TS
 of the atoms being reionized, and
 only mild heating

Efficiently Ionizing Dark Matter Candidates

10⁰

10-2

 10^{-6}

 10^{-8}

.º 10^{−4}

To provide the majority of the radiation that reionized the universe, we need another of WIMP

For example, we could consi WIMPs with:

- A considerably larger annihilation cross section
- Dominant annihilation channels to electrons (more inverse Compton)

20 40 60 80 $^{\circ}$ $^{$

 $m_x=100 \text{ GeV}$

 $\sigma v = 3x10^{-26} \text{ cm}^3 \text{s}^{-1}$

 $\sigma_8 = 0.81$, $n_S = 0.96$ — $\sigma_8 = 0.864$, $n_S = 0.986$ —

But what possible motivation could we have for such a dark matter candidate?

Pamela's Cosmic Ray Positron Measurement

First glance:
-ls this all
screwed up?

Charge-dependent solar modulation important below 5-10 GeV!

(Pamela's sub-10 GeV positrons appear as they should!)

Pamela's Cosmic Ray Positron Measurement

First glance:
-Is this all
screwed up?

Charge-dependent solar modulation important below 5-10 GeV!

(Pamela's sub-10 GeV positrons appear as they should!)

Astrophysical expectation (secondary production)

Pamela's Cosmic Ray Positron Measurement

First glance:
-Is this all
screwed up?

Charge-dependent solar modulation important below 5-10 GeV!

(Pamela's sub-10 GeV positrons appear as they should!)

Rapid climb
above 10 GeV
indicates the
presence of a
primary
source of
cosmic ray
positrons!

Astrophysical expectation (secondary production)

Dan Hooper - Did Dark Matter Annihilations Reionize The Universe?

Pamela Collaboration, arXiv:0810.4995

The Cosmic Ray Electron Spectrum

- In a series of balloon flights, ATIC measured an excess of cosmic ray electrons between 300 and 800 GeV (Nature, Nov. 21, 2008)
- New results from the Fermi
 Gamma Ray Space
 Telescope (and HESS)
 measure a less pronounced
 feature, but still an excess

•The positrons/electrons observed by Pamela and Fermi could be generated by dark matter annihilations,...

but to do so would require the dark m to have so special prop

Cholis, Goodenough, Hooper, Simet, Weiner arXiv:0809.1683

100

Energy (GeV)

1000

Background e⁺e⁻, BF = 310

Dan Hooper - Did Dark Matter Annihilations Reionize The Universe?

Bergstrom, Edsjo, Zaharijas, arXiv:0905.0025

0.1

 To produce the observed positron excess, dark Matter annihilations must proceed mostly to charged leptons

Dan Hooper - Did Dark Matter Annihilations Reionize The Universe? Cholis, Goodenough, Hooper, Simet and Weiner, arXiv:0809.1683

- To produce the observed positron excess, dark Matter annihilations must proceed mostly to charged leptons
- The Fermi spectrum (if explained by dark matter), requires TeV-scale WIMPs that annihilate to $\mu^+\mu^-$

Dan Hooper - Did Dark Matter Annihilations Reionize The Universe?

Bergstrom, Edsjo, Zaharijas, 2009

 To produce the observed positron excess, dark Matter annihilations must proceed mostly to charged leptons

• The Fermi spectrum (if explained by dark matter), requires

TeV-scale WIMPs that annihilate to $\mu^+\mu^-$

 Annihilations to leptons also enable stringent constraints from gamma ray and measurements to be

Pamela Collaboration, arXiv:0810.4994

 The PAMELA/Fermi signals also require very large annihilations rates compared to that expected from a typical thermal relic

Dan Hooper - Did Dark Matter Annihilations Reionize The Universe?

Cholis, Goodenough, Hooper, Simet and Weiner, 2008; Bergstrom, Edsjo, Zaharijas, 2009

One possible solution:

 Annihilation rate dramatically increased by non-perturbative effects known as the

"Sommerfeld Enhancement"

-Very important for m_{ϕ} << m_{χ} and v_{χ} <<c (such as in the halo, where $v_{\chi}/c\sim10^{-3}$)

One possible solution:

 Annihilation rate dramatically increased by non-perturbative effects known as the

-Very important for m_{ϕ} << m_{χ} and v_{χ} <<c (such as in the halo, where $v_{\star}/c\sim10^{-3}$)

•If $m_{\phi} < 2m_{\pi}$ final products will be largely muons, electrons

Dan Hooper - Did Dark Matter Annihilations Reionize The Universe? Arkani-Hamed, Finkbeiner, Slatyer, Weiner, arXiv:0810.0713; Cirelli and Strumia, arXiv:0808.3867

A Supersymmetric Realization:

- •In the MSSM extended by a highest singlet, the LSP can be a singlino, coupled to light singlet-like h scalar (h) and psedoscalar (a) higgs bosons
- Can provide the PAMELA/FGST signals, including large annihilation rate via a higgs induced
 Sommerfeld effect

What Effect Would Such A WIMP Have On Reionization?

Recall that a typical ~100 GeV
 WIMP which annihilates to W
 +W- with a cross section of σv ~ 3 x 10⁻²⁶ cm³/s only reionizes ~1% of atoms by z=6

What Effect Would Such A WIMP Have On Reionization?

Recall that a typical ~100 GeV WIMP which annihilates to W +W- with a cross section of σv ~3 x 10-26 cm³/s only reionizes ~1% of atoms by z=6

•If we boost the cross section by a factor of ~10² (a non-thermal wino-like neutralino, for example), we find that dark matter can be the dominant source of reionization

What Effect Would Such A WIMP Have On Reionization?

 WIMPs annihilating directly to electrons are far more efficient in reionizing gas (by a factor of ~10)

Observed degree of reionization (z>6) (WMAP optical depth)

Dan Hooper - Did Dark Matter Annihilations Reionize The Universe?

Belikov and Hooper, arXiv:0904.1210

If annihilating dark matter is responsible for the PAMELA (or ATIC) signals, then dark matter is also predicted to have played a dominant role in reionizing the universe!

(Modest) Uncertainties

- •Cosmological parameters (σ_8 , η_s) impacting the halo mass function
- Clumping of gas (impact on recombination rate)
- •Halo profile/concentration

- •How does the fraction of doubly ionized helium evolve with redshift?
- A closer look at gas heating both modeling and constraints
- •From the WMAP optical depth measurement, what constraints can be placed on the dark matter annihilation cross section/channels?

Future Experiments!

 Planck will considerably refine the optical depth measurements, perhaps even providing information in redshift bins

Future Experiments!

•The Fermi Gamma Ray Space Telescope will be studying the extragalactic diffuse gamma ray background - if dark matter reionized the universe, it will also have generated a very bright background

Future Experiments!

The Fermi Gamma Ray Space
 Telescope will be studying the extragala

extragala backgrou the unive

background

•Although a typical thermal WIMP would provide only ~0.5% of the 1-10 GeV background observed by EGRET, a WIMP capable of reionizing the universe would generate a background comparable to that observed (FGST would resolve very little of that flux)

Dan Hooper - Did Dark Matter Annihilations Reionize The Universe?

Future Experiments!

 21 cm emission from neutral gas corresponds to radio frequencies (1.4 GHz)/(1+z)

Very large radio observatories such as LOFAR may be able to map out the detailed history of reionization with redshift

Dan Hooper - Did Dark Matter Annihilations Reionize The Universe?

Future Experiments!

•As the Pamela collaboration accumulates and analyzes more data, they project that they will measure the positron fraction up to ~200-300 GeV

Summary

- •Between ~200 million and ~1 billion years after the big bang, the baryonic gas in our universe was almost entirely reionized - the source(s) of the responsible radiation may include quasars, early stars, and/or dark matter annihilations
- •Dark matter annihilations in typical thermal WIMP scenarios lead to only ~1% of the gas becoming ionized
- WIMPs which annihilate primarily to leptons are
 10 times more efficient at ionizing gas (importance of inverse Compton scattering!)
- If dark matter is responsible for the PAMELA positron excess, then it is also expected to have played a major role in the reionization of our universe

Summary

There are many possible empirical roads toward better understanding dark matter's role in reionization:

•Planck - improved measurement of the universe's Thompson optical depth, perhaps including redshift information

•Fermi Gamma Ray Space Telescope - measurements of the extragalactic diffuse ray background

•LOFAR - 21 cm mapping opens the possibility tracing the reionization history of the universe

